Machine Learning
1、基础知识
1.1 机器学习方式
1.2 模型评估
1.2.1 错误率与精度
1.2.2 查准率与查全率
2、分类-基本算法
2.1 决策树
2.1.1 决策树的基本原理
2.1.2 决策树的三要素
2.1.3 决策树算法的优缺点
2.1.4 熵和信息增益的区别
2.1.5 剪枝处理的作用及策略
2.1.6 决策树算法-id3
2.1.7 决策树算法-c4.5
2.1.8 决策树算法-cart
3、分类-组合算法
3.1 集成学习概述
3.2 个体学习器
3.3 结合策略
3.4 Bagging和Boosting的联系与区别
3.5 Bagging
3.5.1 随机森林原理
3.6 Boosting
3.6.1 AdaBoost原理
-
+
游客
注册
登录
决策树的基本原理
决策树是一种分而治之的决策过程。一个困难的问题,通过树的分支节点。被划分成两个或多个较为简单的子集,从结构上划分为不同的子问题。将依规则分割数据集的过程不断递归下去。随着树的深度不断增加,分支节点的子集越来越小,所需要提的问题数也逐渐简化。当分支节点的深度或者问题的简单程度满足一定的停止规则时,该分支节点会停止分裂,此为自上而下的停止阈值法;有些决策树也使用自下而上的剪枝法。
ricear
2021年3月29日 18:51
©
BY-NC-ND(4.0)
转发文档
收藏文档
上一篇
下一篇
手机扫码
复制链接
手机扫一扫转发分享
复制链接
Markdown文件
分享
链接
类型
密码
更新密码